Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Akira Mori, Kanji Kubo,*
 Bing Zhu Yin and Hitoshi Takeshita

Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

Correspondence e-mail:
kubo-k@cm.kyushu-u.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.055$
$w R$ factor $=0.167$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

18-Isopropyl-15-(4-nitrophenyl)-5,8,11-trioxa-2,14-di-thiabicyclo[14.4.1]henicosa-1(20),16,18-trien-21-one

In the title $7-17$ fused ring compound, $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}_{2}$, the tropone ring is deformed to be a flattened boat conformation, with dihedral angles of 7.7 (3) and $16.9(5)^{\circ}$. The best plane of the tropone ring intersects the crown $\mathrm{S}_{2} \mathrm{O}_{3}$ plane at an angle of $58.5(1)^{\circ}$.

Comment

Mercurophilic dithiacrown derivatives having a troponoid pendant (Mori et al., 1996, 1997; Kubo et al., 1998) were recently prepared since these molecules are excellent carriers of the mercury(II) ion. Particularly noteworthy is, based on their reversible complexation behaviors with mercury(II) salts, the exclusive and selective transport of the mercury(II) ion among various metal ions through a liquid membrane.

As a matter of efficiency in the transport of the mercury(II) ion, the dithiacrown derivatives condensed with a tropone system showed a dependence on the cavity size of the crown ethers (Mori et al., 1996). This was confirmed by the X-ray analyses (Kubo et al., 1995, 1996, 2000a,b; Kato et al., 1995; Mori et al., 1998). In order to reveal the detailed structure of troponoid dithiacrown ether derivatives, the title compound, (I), has been investigated by X-ray analysis.

(I)

In (I), the tropone ring (O 1 and $\mathrm{C} 1-\mathrm{C} 7$) makes angles of 58.5 (1), 59.6 (1) and $60.0(2)^{\circ}$ with the crown ether ring (defined by $\mathrm{S} 1-\mathrm{S} 2$ and $\mathrm{O} 2-\mathrm{O} 4$), the benzene ring ($\mathrm{C} 20-\mathrm{C} 25$), and the isopropyl group (C8-C10), respectively. The conformation of the ethereal moiety is: $\mathrm{C} 11(g) \mathrm{S} 1(g) \mathrm{C} 12(g) \mathrm{C} 13(t)$ $\mathrm{O} 2(g) \mathrm{C} 14(g) \mathrm{C} 15(t) \mathrm{O} 3(t) \mathrm{C} 16(g) \mathrm{C} 17(t) \mathrm{O} 4(t) \mathrm{C} 18(g) \mathrm{C} 19(t) \mathrm{S} 2$, where t and g denote trans and gauche forms, respectively.

The tropone ring adopts a flattened boat conformation. The angle between the least-squares plane defined by C2/C3/C6/C7 and the plane defined by $\mathrm{C} 3 / \mathrm{C} 4 / \mathrm{C} 5 / \mathrm{C} 6$ is 7.7 (3) ${ }^{\circ}$. The flattened boat form of the tropone ring was also observed in related compounds. In (I), the angle between the $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 7$ and $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 6 / \mathrm{C} 7$ planes is $16.9(5)^{\circ}$, which is smaller than that [20.8 (4) ${ }^{\circ}$] of 5,8,11-trioxa-2,14-dithiabicyclo[13.4.1]icosa-

Received 8 January 2001 Accepted 12 January 2001 Online 19 January 2001

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

1(19),15,17-trien-20-one (Kubo et al., 2000a) and that [33.8 (6) ${ }^{\circ}$] of 5-oxa-2,8-dithiabicyclo[7.4.1]tetradeca-9,11,13-trien-14-one (Mori et al., 1998). This result suggests that the smaller size of the crown ethers leads to increased deformation of the tropone ring.

Experimental

The title compound, (I), was obtained by condensation from NaHmediated 3,6,9-trioxa-1,11-undecanedithiol and 4-isopropyl-2-(α -tosyloxy-4-nitrobenzyl)tropone (Mori et al., 1992). Single crystals of (I) were obtained by recrystallization from CHCl_{3}.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{~S}_{2} \\
& M_{r}=505.63 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.663(1) \AA \\
& b=18.862(2) \AA \\
& c=11.363(1) \AA \\
& \beta=94.88(6)^{\circ} \\
& V=2490.6(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.348 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 20 \\
& \quad \text { reflections } \\
& \theta=10.1-18.0^{\circ} \\
& \mu=0.26 \mathrm{~mm}^{-1} \\
& T=296(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.3 \times 0.2 \times 0.2 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius FR590 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.982, T_{\text {max }}=1.000$
5321 measured reflections
5059 independent reflections
2259 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0606 P)^{2}\right. \\
& \quad+0.8224 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$
$w R\left(F^{2}\right)=0.167$
$S=1.00$
5059 reflections
307 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

S2-C7	$1.756(4)$	C3-C4	$1.417(5)$
O1-C1	$1.236(4)$	C4-C5	$1.369(6)$
C1-C2	$1.469(5)$	C5-C6	$1.410(6)$
C1-C7	$1.476(5)$	C6-C7	$1.359(6)$
C2-C3	$1.352(5)$		
C3-C4-C8-C9	$-156.8(4)$	O2-C14-C15-O3	$89.5(6)$
C3-C4-C8-C10	$73.6(5)$	C15-O3-C16-C17	$-170.5(5)$
C12-S1-C11-C2	$-83.5(3)$	C18-O4-C17-C16	$177.9(5)$
C11-S1-C12-C13	$66.4(4)$	O3-C16-C17-O4	$67.5(6)$
C14-O2-C13-C12	$-169.0(4)$	C17-O4-C18-C19	$165.1(4)$
S1-C12-C13-O2	$67.5(4)$	O4-C18-C19-S2	$-64.9(6)$
C13-O2-C14-C15	$-57.9(6)$	C7-S2-C19-C18	$93.3(4)$
C16-O3-C15-C14	$128.6(5)$	C2-C11-C20-C21	$-74.2(5)$

All H atoms were located at ideal positions and constrained with $U_{\text {iso }}$ held fixed to 1.2 times or $1.5\left(\mathrm{H}_{2} \mathrm{O}\right)$ times $U_{\text {eq }}$ of the parent atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal_GX (Hall \& du Boulay, 1995); software used to prepare material for publication: SHELXL97.

This work was supported by Grant-in-Aid for the Encouragement of Young Scientists (No. 12740381) from the Ministry of Education Science, Sports and Culture, Japan.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). SIR97. J. Appl. Cryst. 32, 115-119.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R. \& du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
Kato, N., Kubo, K., Mori, A. \& Takeshita, H. (1995). Heterocycles, 41, 19011904.

Kubo, K., Kato, N., Mori, A. \& Takeshita, H. (1995). Chem. Lett. pp. 629-630.
Kubo, K., Mori, A., Kato, N. \& Takeshita, H. (1996). Acta Cryst. C52, 16561658.

Kubo, K., Mori, A., Kato, N. \& Takeshita, H. (1998). Heterocycles, 49, 385-392.
Kubo, K., Kato, N., Mori, A. \& Takeshita, H. (2000a). Heterocycles, 53, 535538.

Kubo, K., Mori, A., Kato, N. \& Takeshita, H. (2000b). Acta Cryst. C56, e396e397.
Mori, A., Yin, B. Z. \& Takeshita, H. (1992). Chem. Express, 7, 313-316.
Mori, A., Kubo, K. \& Takeshita, H. (1996). Coord. Chem. Rev. 148, 71-96.
Mori, A., Kubo, K. \& Takeshita, H. (1997). Heterocycles, 46, 509-516.
Mori, A., Kubo, K., Kato, N., Takeshita, H., Shiono, M. \& Achiwa, N. (1998). Heterocycles, 47, 149-152.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

